

 Application Note

HOW TO USE ROHDE &
SCHWARZ INSTRUMENTS IN
MATLAB

Miloslav Macko | 1MA171 | Version 14e | 10.2021

MATLAB® is a registered trademark of the The MathWorks, Inc.

MATLAB Instrument Control Toolbox™ is a trademark of the The MathWorks, Inc.

R&S® is a registered trademark of Rohde & Schwarz® GmbH & Co. KG.

Microsoft® and Windows® are U.S. registered trademarks of the Microsoft Corporation

Note:

Please find the most up-to-date Application Note on our homepage:

http://www.rohde-schwarz.com/appnote/1MA171

Rohde & Schwarz | Application Note How to use Rohde & Schwarz Instruments in MATLAB 2

Contents

1 Overview .. 3

2 Introduction ... 4

2.1 VISA Connection and Direct SCPI Commands ...4

2.2 Using VXI plug&play Instrument Drivers ...4

3 Direct SCPI Commands Communication .. 5

4 Using VXI plug&play Instrument Drivers .. 9

4.1 Installing VXIplug&play Instrument Drivers ...9

4.2 MATLAB MDD Drivers .. 10

4.3 Opening and Closing Instrument Driver Session ... 11

4.4 Calling Instrument Driver Functions .. 12

4.5 Setting Property Value .. 13

4.6 Reading Property Value .. 13

4.7 Repeated Capabilities ... 14

4.8 Property Identifier .. 15

Rohde & Schwarz | Application Note How to use Rohde & Schwarz Instruments in MATLAB 3

1 Overview

This application note outlines two different approaches for remote-controlling Rohde & Schwarz instruments

out of MathWorks MATLAB:

► The first one uses VISA connection and direct SCPI commands.

► The second approach takes advantage of Rohde & Schwarz VXI plug&play instrument drivers and

MATLAB Instrument Control Toolbox.

Rohde & Schwarz | Application Note How to use Rohde & Schwarz Instruments in MATLAB 4

2 Introduction

MATLAB has become widely used platform among students, engineers and developers. When users wish to

remote-control measurement instruments from MATLAB, they have several options to choose from. This

application note presents two of them.

2.1 VISA Connection and Direct SCPI Commands

We recommend this option for most of the users. It is simple and besides VISA it does not require any

additional software component. Attached to this application note, is a MATLAB class VISA_Instrument that

presents VISA interface for MATLAB script language. Practical examples with the VISA_Instrument are part

of the attachment.

Advantages:

► Simplicity.

► VISA session is closed properly even if MATLAB script is interrupted; this is helpful if an instrument can

only handle one VISA session at a time.

► Most of the commonly used operations are provided by the attached MATLAB class

VISA_Instrument. This class is open for further extensions.

► Error handling is performed in the form of exceptions.

► Included, are ready-to-use examples for R&S FSW / FSV / RTO / RTE / RTB

Disadvantages:

► You need to get familiar with the instrument's SCPI language.

► Parsing of more complex instrument responses needs to be done in the user code.

2.2 Using VXI plug&play Instrument Drivers

This alternative route takes advantage of Rohde & Schwarz VXI plug&play instrument drivers and requires

MATLAB Instrument Control Toolbox to be available.

Advantages:

► Error handling is already performed by the instrument driver.

► Instrument drivers take care of proper measurement synchronization.

► Instruments driver come with help file for all functions and attributes.

► More complex instrument responses are already parsed by instrument drivers.

Disadvantages:

► Slightly longer learning curve.

► Longer initialization of the driver session due to additional time needed to parse the MATLAB driver file.

► More difficult to build executables, since the code uses external dll libraries.

Rohde & Schwarz | Application Note How to use Rohde & Schwarz Instruments in MATLAB 5

3 Direct SCPI Commands Communication

Referenced files - all packed into MATLAB_directSCPI_Examples.zip:

► VISA_Instrument.m

► MATLAB_directSCPI_Hello_World.m

► MATLAB_directSCPI_Specan_Example.m

► MATLAB_directSCPI_Scope_Example.m

► MATLAB_directSCPI_RTB_Example.m

Required software. The actual software used to prepare this document is mentioned in the round brackets:

► MATLAB 2013 or later (2016a)

► Windows XP / VISTA / Win 7 (Win 7 64-bit)

► NI VISA I/O library 15.0 or late (NI VISA 16.0)

If you are new to the topic of remote-control, we recommend reading this small tutorial:

R&S Instrument Drivers and Remote Control

Communication with an instrument over VISA is of a synchronous message-based type. That means, the

instrument never responds unless the controller (your computer) requires it to do so. The request is formed

into a string called SCPI command (short for Simple Commands for Programmable Instruments), and the

instrument reacts in two different ways:

► processing it, but returning no response. An example of such command is '*RST' (returning your

instrument to a defined state).

► processing it and returning a response. Such command contains question mark and often is more

specifically called query. An example of a query is '*IDN?' (asking for the instrument identification string).

After sending this query, you must read the response from the instrument.

Some SCPI commands exist both as commands and queries. An example would be Spectrum

Analyzer center frequency. You can set the center frequency with the SCPI command

'FREQ:CENT 100MHz', and also ask for it with the query 'FREQ:CENT?'

However, for example, the '*RST' command exists only as command, the query form

'*RST?' is not valid.

In contrast, the command '*IDN?' exists only as query. The form '*IDN' is invalid.

https://www.rohde-schwarz.com/au/driver-pages/remote-control/drivers-remote-control_110753.html

Rohde & Schwarz | Application Note How to use Rohde & Schwarz Instruments in MATLAB 6

Most common mistakes with SCPI commands and queries are:

Sending a command (not a query) and trying to read a response from the instrument. This

results in your program waiting until the VISA timeout occurs, since the instrument has nothing

to respond to.

Sending a query and not reading the response from the instrument. This causes problem with

the next query, when the instrument will report the error Query Interrupted. It means, you

did not read the previous response before you sent a new query.

To avoid both of these problems, always use the Write() methods for commands and

Query...() methods for queries - see the description of the VISA_Instrument class

below.

The '*RST' command and the '*IDN?' query are standard commands supported by every SCPI-conform

instrument. To get the information about valid SCPI commands for your instrument, refer to the Remote

Control portion of its user manual. User manual also describes whether the command is available as a

command, query, or both.

To follow next steps, extract the content of the MATLAB_directSCPI_Examples.zip into your MATLAB

working directory.

All the examples from the ZIP file show the usage of the VISA_Instrument object. They are written

according to the description in the abovementioned remote-control tutorial, especially the chapters on

Measurement Synchronization and Instrument Error Checking.

The file VISA_Instrument.m is a MATLAB class wrapping up .NET component called Ivi.Visa. It offers

convenient way of communicating with your instrument and also parsing common type of responses to

MATLAB-native variables. A small script below (also available as MATLAB_directSCPI_Hello_World.m)

shows how simple is it to open a VISA instrument connection, reset the instrument, query identification string,

and close the connection:

mySpecan = VISA_Instrument('TCPIP::192.168.2.100::INSTR');

mySpecan.Write('*RST');

idnResponse = mySpecan.QueryString('*IDN?')

msgbox(sprintf('Hello, I am\n%s', idnResponse));

mySpecan.Close();

Most commonly used operations with examples are shown in the table below. To invoke the full help of

VISA_Instrument, type the following into your MATLAB Command Window (without sharp brackets):

>> help VISA_Instrument

and use the provided link:

Reference page for VISA_Instrument

Rohde & Schwarz | Application Note How to use Rohde & Schwarz Instruments in MATLAB 7

Most commonly used VISA_Instrument methods and properties

VISA Instrument() - constructor that opens the connection to the instrument.

Example:
mySpecan = VISA_Instrument('TCPIP::192.168.1.100::INSTR')

Close() - closes the connection to the instrument.

Example:
mySpecan.Close()

Write() - writes command to the instrument.

Examples:
mySpecan.Write('*RST')

mySpecan.Write('FREQUENCY:CENTER %0.1f', frequency)

AddLFtoWriteEnd - property for adding LINEFEED (0x0A or '\n') to the end of each sent

command,
since some instruments require it. Default value is false.

Example:
mySpecan.AddLFtoWriteEnd = true

mySpecan.Write('*RST') - the actual sent string is '*RST\n'

ReadString() reads response from the instrument and returns it as MATLAB string. Make sure that you

only use it in combination with Write(), or better use the QueryString().

Example:
mySpecan.Write('*IDN?')

idnResponse = mySpecan.ReadString()

QueryString() combines Write() and ReadString() into one method.

Examples:
idnResponse = mySpecan.QueryString('*IDN?')

limitLineName = mySpecan.QueryString('CALC:LIM%d:NAME?', limitLine)

QueryLongString() - use this method instead of the QueryString(), if you expect a response longer

than 4096 bytes.

Examples:
idnResponse = mySpecan.QueryLongString('*OPT?')

catalog = mySpecan.QueryLongString('DISPLAY:WINDOW%d:CATALOG?', window)

QueryBoolean(), QueryInteger(), QueryDouble() query the instrument and convert responses

to
MATLAB boolean, integer and double values.

Examples:
output = mySpecan.QueryBoolean('OUTPUT1?')

output = mySpecan.QueryBoolean('OUTPUT%d?', output)

assignedTrace = mySpecan.QueryInteger('CALC:MARK1:TRAC?')

assignedTrace = mySpecan.QueryInteger('CALC:MARK%d:TRAC?', marker)

markerAmplitude = mySpecan.QueryDouble('CALC:MARK1:Y?')

markerAmplitude = mySpecan.QueryDouble('CALC:MARK%d:Y?', marker)

Rohde & Schwarz | Application Note How to use Rohde & Schwarz Instruments in MATLAB 8

More advanced methods

QueryBinaryFloatData() queries binary-formatted data (traces or waveforms) from the instrument.

Example:
trace = mySpecan.QueryBinaryFloatData('FORM REAL,32;:TRAC? TRACE1')

ReadBinaryDataToFile() reads instrument binary response and stores it to a PC file. Use this, for

example, to transfer a screenshot file from the instrument to the PC. Make sure that you only use it in
combination with Write().

Example:
mySpecan.Write('MMEM:DATA? ''c:\Instrument\Device_Screenshot.png''')

mySpecan.ReadBinaryDataToFile('c:\PC_Screenshot.png')

QueryASCII_ListOfDoubles() queries comma-separated list of numbers and returns them as double

array. You must define the maximum expected array size.

Example:
trace = mySpecan.QueryASCII_ListOfDoubles('FORM ASC;:TRAC? TRACE1', 100000)

ErrorChecking() throws an exception if the instrument reports an error. The procedure for checking

instrument error is described in the remote-control tutorial mentioned above, chapter Instrument Error
Checking. If you only want to check for instrument errors without throwing an exception, call the
ReadErrorQueue()

Example:
mySpecan.ErrorChecking()

Open the attached example file for the R&S FSW / FSV / FPS:

MATLAB_directSCPI_Specan_Example.m

The example is commented in detail to show proper initialization, settings, acquisition of a trace, retrieving

trace results, marker results and a screenshot file. Included, is proper instrument error checking and

measurement synchronization.

Always use single acquisition mode with Spectrum Analyzers, Network Analyzers,

Oscilloscopes, Communication Testers, Power Meters, Audio Analyzers and so on. The most

common mistake users make when they are starting with instrument remote control is, they use

continuous acquisition mode. If your instrument is in the continuous mode, you are never

guaranteed proper and repeatable measurement results.

Switch your Spectrum Analyzers to single acquisition mode with the SCPI command

INIT:CONT OFF

For oscilloscopes, use the SCPI command SING to start a single waveform acquisition.

Rohde & Schwarz | Application Note How to use Rohde & Schwarz Instruments in MATLAB 9

4 Using VXI plug&play Instrument Drivers

Referenced files - all packed into MATLAB_ICT_rsspecan_Examples.zip:

► MATLAB_ICT_rsspecan_OpenClose.m

► MATLAB_ICT_rsspecan_Open_SetGet_Close.m

► MATLAB_ICT_rsspecan_Complex_Example.m

Required software. The actual software we used to prepare this chapter is mentioned in the round brackets:

► MATLAB 2013 or later (2016a)

► MATLAB Instrument Control Toolbox, further referred to as ICT

► Windows XP / VISTA / Win 7 (Win 7 64-bit)

► R&S VISA 5.5.5 or other vendor VISA (R&S VISA 5.5.5)

► Rohde & Schwarz VXIplug&play instrument driver (rsspecan VXIplug&play driver 64 bit 3.8.0)

► for 64-bit MATLAB: Supported compiler. See the list of Supported compilers (Microsoft Visual C++ 2015

Professional)

4.1 Installing VXIplug&play Instrument Drivers

Rohde & Schwarz VXI plug&play instrument drivers are available in the Drivers download area on our

website:

Rohde & Schwarz driver search

After installing the instrument driver, the ICT gives you the option to verify the installation. After the

successful installation of rsspecan instrument driver, use the following command:

>> instrhwinfo ('vxipnp', 'rsspecan')

ans =

HardwareInfo with properties:

 Manufacturer: 'Rohde & Schwarz GmbH'

 Model: 'Rohde&Schwarz Spectrum Analyzer'

 DriverVersion: '1.0'

 DriverDllName: 'C:\Program Files\IVI Foundation\VISA\Win64\bin\rsspecan_64.dll'

Access to your hardware may be provided by a support package.

Go to the Support Package Installer to learn more.

The type of VXI plug&play instrument driver always has to match the type of MATLAB, not the

type of your operating system. That means:

For MATLAB 64-bit, you can only use 64-bit VXI plug&play instrument drivers.

For MATLAB 32-bit, you can only use 32-bit VXI plug&play instrument drivers even on 64-bit

operating system.

https://www.rohde-schwarz.com/driver/fsw/?&facet=facet.DriverTechnologie&facet.DriverTechnologie=VXIplug%26play
https://www.mathworks.com/support/requirements/previous-releases.html
https://www.rohde-schwarz.com/au/search/driver_63451.html?term=*

Rohde & Schwarz | Application Note How to use Rohde & Schwarz Instruments in MATLAB 10

4.2 MATLAB MDD Drivers

As a part of Rohde & Schwarz VXI plug&play instrument drivers provides MATLAB MDD drivers (single file

with mdd extension). For example, you can find the rsspecan.mdd file in the driver's directory:

32-bit VXI plug&play instrument driver base path:

c:\Program Files (x86)\IVI Foundation\VISA\WinNT\rsspecan

64-bit VXI plug&play instrument driver base path:

c:\Program Files\IVI Foundation\VISA\Win64\rsspecan

MATLAB MDD drivers are XML files that provide an interface between VXI plug&play instrument driver and

MATLAB. Rohde & Schwarz VXI plug&play instrument drivers are attribute-based, i.e. you can access

instrument's capabilities either with Functions or Attributes (in MATLAB called Properties). They are

described in the help file rsspecan_vxi.chm located in the same folder as the rsspecan.mdd file:

Figure 1: Functions of the VXI plug&play instrument driver described in the *.chm file

Rohde & Schwarz | Application Note How to use Rohde & Schwarz Instruments in MATLAB 11

Figure 2: Attributes of the VXI plug&play instrument driver described in the *.chm file

4.3 Opening and Closing Instrument Driver Session

Below is an example of MATLAB script that opens new rsspecan session, queries the instrument

identification string and closes the session. This script is also available as

MATLAB_ICT_rsspecan_OpenClose.m :

% Create a device object and connect to the instrument

specan = icdevice('rsspecan.mdd', 'TCPIP::192.168.1.100::INSTR');

connect(specan)

% Query ID response

idQueryResponse = zeros (1024, 1);

[idQueryResponse] = invoke (specan, 'IDQueryResponse', 1024, idQueryResponse)

% Disconnect device object from the instrument and delete the object.

disconnect(specan);

delete(specan);

Rohde & Schwarz | Application Note How to use Rohde & Schwarz Instruments in MATLAB 12

4.4 Calling Instrument Driver Functions

All the code examples used in next chapters we summarized into the following file:

MATLAB_ICT_rsspecan_Open_SetGet_Close.m

Use the help file rsspecan_vxi.chm to find a function you want to call. Let us, for example, take setting of

the Spectrum Analyzer center frequency. The function help also contains the MATLAB code snippet:

Figure 3: VXI plug&play instrument driver functions help including MATLAB prototypes

Copy and paste the part marked into your code and adjust the parameters.

Example:

invoke(specan, 'ConfigureFrequencyCenter', 0, 110E6)

Rohde & Schwarz | Application Note How to use Rohde & Schwarz Instruments in MATLAB 13

4.5 Setting Property Value

Use the help file rsspecan_vxi.chm to find a property you want to set. As an example, we use the same

instrument parameter as in the previous chapter: center frequency. The property help also contains the

MATLAB settings code snippet:

Figure 4: VXI plug&play instrument driver properties help including MATLAB prototypes for setting

Copy and paste the part marked into your code, adjust the object name and the last two parameters:

value_to_be_set : enter the desired frequency as double number.

repeated_capability_string : non-mandatory string parameter. See the part marked Supported

Repeated Capabilities for valid values. In our case, the attribute RSSPECAN_ATTR_FREQUENCY_CENTER

has no repeated capabilities supported, therefore you can leave this parameter out. The chapter Repeated

Capabilities describes this parameter in more details.

Example:

invoke(specan, 'SetProperty', 'RSSPECAN_ATTR_FREQUENCY_CENTER', 110E6)

4.6 Reading Property Value

Copy and paste the part marked into your code and adjust the object name.

repeated_capability_string : non-mandatory string parameter, same as for setting the property value.

Example:

centerFrequency = invoke(specan,'GetProperty','RSSPECAN_ATTR_FREQUENCY_CENTER')

Rohde & Schwarz | Application Note How to use Rohde & Schwarz Instruments in MATLAB 14

4.7 Repeated Capabilities

To briefly explain Repeated Capabilities, let us take the property RSSPECAN_ATTR_MARKER_ENABLED as an

example: This property has boolean value of True or False (Marker State ON or OFF). However, you also

need to communicate to the instrument which one of the sixteen markers (the area marked) you want to

enable. This information you enter as repeated_capability_string. If a property have more Repeated

Capabilities defined, they are separated by commas without spaces. An example of such property is

RSSPECAN_ATTR_TRACE_STATE.

Figure 5: Marker property with defined Repeated Capabilities

Example:

invoke(specan, 'SetProperty', 'RSSPECAN_ATTR_MARKER_ENABLED', 1, 'M1')

invoke(specan, 'SetProperty', 'RSSPECAN_ATTR_TRACE_STATE', 1, 'Win1,TR1')

Rohde & Schwarz | Application Note How to use Rohde & Schwarz Instruments in MATLAB 15

4.8 Property Identifier

In the previous chapters when setting and reading properties, we used the following property identifier string

for center frequency: RSSPECAN_ATTR_FREQUENCY_CENTER. However, there are two names and their

variants you can use as well - see the texts marked in the help file screenshot below:

Figure 6: Property Identifiers in the rsspecan help file

All the invoke calls below achieve the same action, they only differ in Property ID:

% Complete Property ID

invoke(specan, 'SetProperty', 'RSSPECAN_ATTR_FREQUENCY_CENTER', 110E6)

% Property ID without prefix

invoke(specan, 'SetProperty', 'ATTR_FREQUENCY_CENTER', 110E6)

% Property ID case Insensitive

invoke(specan, 'SetProperty', 'RsSPeCAN_AttR_FrEQuENCy_CeNTeR', 110E6)

% Descriptive name

invoke(specan, 'SetProperty', 'Center Frequency', 110E6)

% Descriptive name with underscores

invoke(specan, 'SetProperty', 'Center_Frequency', 110E6)

% Descriptive name case insensitive

invoke(specan, 'SetProperty', 'CeNtEr FrEqUeNcY', 110E6)

